Query Understanding in Web Search - by Large Scale Log Data Mining and Statistical Learning
نویسنده
چکیده
Query understanding is an important component of web search, like document understanding, query document matching, ranking, and user understanding. The goal of query understanding is to predict the user’s search intent from the given query. Needless to say, search log mining and statistical learning are fundamental technologies to address the task of query understanding. In this talk, I will first introduce a large-scale search log mining platform which we have developed at MSRA. I will then explain our approach to query understanding, as well as document understanding, query document matching, and user understanding. After that, I will describe in details about our methods for query understanding based on statistical learning. They include query refinement using CRF, named entity recognition in query using topic model, context aware query topic prediction using HMM. This is joint work with Gu Xu, Daxin Jiang and other collaborators.
منابع مشابه
Discovering Popular Clicks\' Pattern of Teen Users for Query Recommendation
Search engines are still the most important gates for information search in internet. In this regard, providing the best response in the shortest time possible to the user's request is still desired. Normally, search engines are designed for adults and few policies have been employed considering teen users. Teen users are more biased in clicking the results list than are adult users. This leads...
متن کاملQuery Architecture Expansion in Web Using Fuzzy Multi Domain Ontology
Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کامل